
NASA-TE-IIIS07

/

Order of Magnitude Reasoning

Using Logarithms

P. PANDURANG NAYAK

RECOM TECIINOLOGIES

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

NASA AMES RESEARCH CENTER

MAIL STOP 269-2

MOFFETT FIELD, CA 94035-1000

NASA Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-93-26

September, 1993

Order of Magnitude Reasoning

using Logarithms

P. Pandurang Nayak

Recom Technologies, NASA Ames Research Center

AI Research Branch

Mail Stop 269-2

Moffett Field, CA 94035.

Email: nayak@ptolemy.arc.nasa.gov

Abstract

Converting complex equations into simpler, more tractable equations usually in-

volves approximation. Approximation is usually done by identifying and removing

insignificant terms, while retaining significant ones. The significance of a term can

be determined by order of magnitude reasoning. In this paper we describe NAPIER,

an implemented order of magnitude reasoning system. NAPIER defines the order of

magnitude of a quantity on a logarithmic scale, and uses a set of rules to propagate

orders of magnitudes through equations. A novel feature of NAPIER is the way it han-

dles non-linear simultaneous equations, using linear programming in conjunction with

backtracking. We show that order of magnitude reasoning in NAPIER is, in general,

intractable and then discuss an approximate reasoning technique that allows it to run

fast in practice. Some of NAPIER's inference rules are heuristic, and we estimate the

error introduced by their use. We also empirically evaluate alternate rules that are

guaranteed to be correct.

1 Introduction

Mathematical models are pervasive in science and engineering. Both analytical and

numerical techniques have been used to solve the equations resulting from such mod-

els. Analytical methods are applicable only to restricted classes of equations (e.g.,

linear systems). To apply analytical techniques to more complex classes of equations,

scientists and engineers have had to find ways of approximating the equations to

convert them into a simpler form.

With the advent of fast digital computers, the classes of equations that can be

solved by numerical (rather than analytical) methods have grown considerably. How-

ever, numerical methods are not a panacea; they have their limitations too. For exam-

ple, solving systems of non-linear equations can be time consuming, and a good initial

guess is required to ensure convergence to a solution. Hence, scientists and engineers

still strive to identify appropriate approximations so that the resulting equations are

as simple as possible. In addition, numerical methods are sometimes inapplicable. For

example, during conceptual design, exact numerical values for exogenous quantities

are usually unavailable because most of the details of the design are unspecified. Un-

der such circumstances, an engineer needs to fall back on analytical methods, thereby

highlighting the role of appropriate approximations.

The approximation process usually involves identifying and removing insignifi-

cant terms, while retaining only the significant ones. Consider the following example,

previously discussed in [1_ 16], from the domain of acid-base chemistry. An impor-

tant task in this domain is to find the concentration of H + ions in a solution. The

concentration of ions in solution depends on the dynamic equilibrium resulting from

competing chemical reactions. Consider dissolving an acid, AH, in water. The two

reversible reactions that occur, corresponding to the ionization of AH and H20, are

shown in Figure 1.

AH _ H + + A-

H_O _ H + +OH-

Figure 1: Ionization reactions that occur on dissolving AH in water

The equilibrium concentrations of the three ions (H+,OH-,A -) and the acid

(AH) are determined by the equations shown in Figure 2. Square brackets denote

concentrations; Ca is the initial concentration of the acid; Kw is the ion product of

water; and I(a is the ionization constant of the acid.

As has been pointed out in [1; 16], solving this set of equations analytically for

[H +] results in a cubic equation which is difficult to solve. In fact, in problems

involving polyprotic acids, i.e., acids that can yield more than one H + ion, the closed

form solution for [H +] can involve equations of degree five or higher, making the

solution significantly harder.

Chargebalance:
Massbalance:

Acid ionization equilibrium:
Water ionization equilibrium:

[H+]=[A-]+[OH -]
Ca=[A-]+[AH]

Ka[AH]=[A-I[H +]

gw=[og-][g +]

(1)
(2)
(3)
(4)

Figure 2: Equilibrium equations for the ionization reactions.

An alternative to the above approach is to approximate the equations, and hence

simplify them. For example, a chemist might guess that the acid is strong, so that

[A-] >> [OH-] and [A-] ::>>[AH]. This justifies reducing the first equation to [g +] =

[A-] and the second equation to Ca = [A-], leading to a straightforward solution.

The reasoning following the assumptions that [A-] :>> [OH-] and [A-] _, [AH]

is very nicely formalized in [16]. But how are these assumptions justified? In [1],

Bennett suggests that such assumptions are justified by domain specific inference

rules. In this paper we present a domain-independent method for justifying such

assumptions. In particular, we define the order of magnitude of a quantity on a

logarithmic scale. We show how the order of magnitude of exogenous quantities like

C_, K_, and I(_ can be propagated through a set of equations like Equations 1-4 to

compute orders of magnitudes of the remaining quantities like [H+], [OH-], [A-],

and [AH]. The computed orders of magnitude of [A-], [OH-], and [AH] can be used

to justify the above assumptions and simplify the equations.

The reasoning technique described here has been implemented in a program called

NAPIER. 1 NAPIER has been successfully tested on multiple examples in the domain of

electromechanical devices, with the number of equations per example ranging from

about 25 to a little over 150.

In the next section, we define the order of magnitude of a quantity and present

rules for propagating orders of magnitudes through equations. We show that these

rules can be used to infer orders of magnitudes of quantities related by a set of

non-linear simultaneous equations. In Section 3 we show that, in general, order of

magnitude reasoning is intractable (NP-hard). We show that the exponential blow up

does occur in practice, and hence, in Section 4, we present an approximate reasoning

technique that is efficient in practice. Some of the order of magnitude rules introduced

in Section 2 are heuristic rules. In Section 5 we estimate the error introduced by the

use of these heuristic rules, while in Section 6 we consider alternate rules that are

guaranteed to be correct. We conclude with a discussion of related work.

1John Napier (1550-1617), a Scottish nobleman, is credited with the first discovery of logarithms.

2 Order of magnitude reasoning in NAPIER

Order of magnitude reasoning in NAPIER is a form of interval reasoning. The order

of magnitude of a quantity q (denoted om(q)) is defined as follows:

om(q) = [logb IqlJ (5)

The choice of the base, b, of the logarithm is arbitrary. However, as we shall see

later, it critically affects the choice of the inference rules used to propagate orders

of magnitudes through equations. In this section we assume that b is the smallest

number that can be considered to be "much larger" than 1. Of course, what counts as

"much larger" than 1 is domain and task dependent. In our use of order of magnitude

reasoning, we have assumed that 10 is the smallest number "much larger" than 1, i.e.,

b = 10. In Section 6 we consider values of b that cannot be considered to be "much

larger" than 1.

Note that the order of magnitude of a quantity, q, is independent of its sign, and

hence om(q) = om(-q). In what follows, we assume that the signs of all quantities

have been determined, to the extent possible, prior to any reasoning about orders of

magnitude using standard constraint satisfaction techniques. 2

2.1 Inference rules in NAPIER

Given the orders of magnitude of ql and q2, NAPIER computes bounds on the orders

of magnitude of arithmetic expressions involving ql and q2, using the rules shown

in Figure 3. The rules for (ql + q2) and (ql - q2) assume that qa and q2 have the

same sign so that the magnitudes of qa and q2 are actually being added or subtracted,

respectively. The rule for (ql + q2) is applicable to a sum or difference of ql and q2

when the sign of at least one of qx and q2 is unknown.

The rules for (ql*q2) and (qx/q2) (rules 1 and 2) follow directly from Equation 5 and

the rules of interval arithmetic [10]. For example, if om(ql) = nl and om(q_) = n2, it

follows that b"1 <]q_[< bn,+l and b"2 < [q2[< b"2+x. Using interval arithmetic, we

get b ''+'_2 _< [ql * q2] < bin+n2+2, and hence na + n2 <_ om(ql * q2) _ nx + n2 + 1.

Like rules 1 and 2, rules 3a and 4a are also based on Equation 5 and interval

arithmetic. Note, however, that these rules predict larger intervals for (qa + q2) and

(qa - q2) than interval arithmetic predicts under the same restrictions on ql and q2.

For example, if om(qx) = ore(q2) = n, then interval arithmetic predicts that (q, + q2)

is bounded by 2b n and 2b TM, while NAPIER predicts n <_ ore(q1 + q2) _< n + 1, which

is equivalent to saying that (ql + q2) lies between b" and bn+2. This larger interval is

a consequence of NAPIER being able to represent only intervals whose end points axe

integer powers of the chosen base. Further note that rules 3a and 4a are correct only

2This assumption is unnecessarily strong. For example, if a and b are positive, constraint satis-
faction alone is unable to deduce the sign of a - b. However, if ore(a) > ore(b), then a - b can be

deduced to be positive.

3

1) ore(q1)-4- om(q2) < om(ql *q2) < om(ql) + ore(q2)+ 1

2) ore(q1)- ore(q2) -- 1 <_ ora(q,/q2) < ora(q,) - om(q2)

3a) ore(q,) < om(q, + q2) < ore(q1) + 1 if ore(q1) = ore(q2)

b) ore(q, + q2) = ora(ql) if ore(q,) > om(q_)

c) ore(q1 + q2) = ore(q2) if om(ql) < ore(q2)

4a) ore(q1- q2) <_ om(q_) if om(q_)= om(q2)

b) om(ql - q2) = ore(q1) if om(ql) > ora(q2)

C) om(ql- q2)= om(q2) if om(ql) < ore(q2)

5a) ora(q, -4- q2) < ore(q,) + 1 if ore(q1) = ore(q2)

b) ore(q, -4- q2) = om(ql) if ore(q,) > ore(q2)

c) om(q_ -4- q2) = om(q2) if ora(ql) < om(q_)

Figure 3: Rules for order of magnitude reasoning

if the base is greater than or equal to 2. This is reasonable given our heuristic for

selecting the base (viz., 2 is unlikely to be considered to be "much larger" than 1).

Unlike the rules discussed thus far, rules 3b, 3c, 4b, and 4c are not guaranteed to

be correct, but are heuristic rules. They are all based on the intuition that adding or

subtracting a "small" quantity from a "large" quantity does not significantly affect

the larger quantity. Since the base in Equation 5 is chosen as the smallest number

that can be considered to be "much larger" than 1, the above intuition justifies these

rules; the order of magnitude of a quantity is not affected by adding or subtracting

quantities of a smaller order of magnitude. The inclusion of these heuristic order of

magnitude rules differentiates NAPIER from standard interval reasoners. In Section 5,

we estimate the error introduced by the use of these heuristic rules, while in Section 6

we consider alternate rules that do not introduce any error.

Finally, rule set 5 merely encompasses both rule sets 3 and 4. It is used to infer

the order of magnitude of a sum or difference of two quantities when the signs of at

least one of the two quantities is not known. To determine the order of magnitude

of a sum or difference of two quantities, NAPIER selects the appropriate rule set from

rule sets 3, 4, and 5, depending on the operation (sum or difference) and the signs

of the two quantities. For example, consider the equation q3 -- ql + q2. If ql and q2

have the same sign, then rule set 3 is used to infer om(qz); if q_ and q2 have opposite

signs, then rule set 4 is used to infer om(q3), since the magnitude of q3 is really the

difference of the magnitudes of ql and q2; and if the signs of at least one of ql and q2

is unknown, then rule set 5 is used to infer om(q3).

4

2.2 Set of simultaneous equations

Until now, we have focussed exclusively on how NAPIER uses a single equation to

propagate orders of magnitudes, i.e., how om(qlop q2) is computed from om(ql) and

ore(q2). However, the rules in Figure 3 can also be used to compute orders of magni-

tudes of quantities related by a set of (possibly non-linear) simultaneous equations.

NAPIER uses these rules to convert a set of simultaneous equations into a set of con-

straints, where each constraint is a disjunction of a set of linear inequalities. Each

equation in the set of simultaneous equations contributes a constraint as follows:

1. Product and quotient terms contribute a single set of linear inequalities accord-

ing to rules 1 and 2, respectively. For example, q3 = ql * q2 contributes the

following set:

{ om(ql) -_ ore(q2) ___ ore(q3),

om(q3) < om(ql) + ore(q2) + 1}

2. Sum and difference terms contribute a disjunction of three sets of linear inequal-

ities, using rule sets 3, 4, or 5, as applicable. Each disjunct corresponds to one

of the rules (a, b, or c) in the applicable rule set. For example, assuming that

ql and q2 have the same sign, the equation q3 = ql - q2 contributes the following

disjunction: 3

{ore(q3) < om(ql), om(ql) = ore(q2)}

V

{om(q3) = om(ql),om(ql) > om(q2) + 1}

V

{om(q3) = om(q2), om(ql) < ore(q2)-- 1}

corresponding to rules 4a, 4h, and 4c, respectively.

NAPIER uses this set of constraints to compute bounds on the orders of magnitudes

of the quantities. Since all the inequalities in the constraints are linear inequalities,

NAPIER uses linear programming [4], in conjunction with backtracking, to compute

order of magnitude bounds. Backtracking is necessary to handle the disjunctions. We

describe this algorithm next.

2.3 Backtracking algorithm

Let E denote the set of simultaneous equations being processed. NAPIER's backtrack-

ing procedure is best visualized as a depth-first traversal of a backtrack tree. Each

level in the tree (except the root level) corresponds to one of the sum or difference

terms in E. The root level corresponds to all the product and quotient terms in

E. Each internal node has three children, corresponding to the three disjuncts in

aSince orders of magnitudes are integral, om(ql) > om(q2) is equivalent to om(ql) > om(q_)+ 1.

5

int = Ka[AH]

int = [A-][H +]

K,o=[OH-][H +]

[H+I=[A-]+[OH -]

Ca = [A-] + [AH]

?
3a 3b 3c 3a 3b 3c 3a 3b 3c

Figure 4: A backtrack tree.

the constraint contributed by the sum or difference term at the level of the node's

children. Each node in the tree has an associated set of linear inequalities defined as

follows:

1. The set of inequalities at the root node consists of the union of the sets of

inequalities contributed by each product and quotient term in E.

2. The set of inequalities at each non-root node consists of the union of (a) the

inequalities at the node's parent; and (b) the inequalities in the disjunct asso-

ciated with that node.

Starting at the root node, NAPIER traverses the backtrack tree in a depth-first

manner. At each node it checks the consistency of the inequalities at that node. If

the set is inconsistent, it immediately backtracks to the node's parent. If the set is

consistent and it is a non-leaf node, it continues its depth-first traversaJ. If the set

is consistent and it is a leaf node, it uses the inequalities to find the maximum and

minimum values of the order of magnitude of each quantity. The bounds computed

at each of the consistent leaf nodes axe combined so that the lower bound of each

quantity is the least lower bound and the upper bound is the greatest upper bound.

Since the inequalities at each node are linear, NAPIER uses the Simplex linear

programming algorithm [4; 14] to check their consistency, and to compute the order

of magnitude bounds at leaf nodes. However, from Equation 5 it follows that the order

of magnitude of a quantity is integral. Hence, instead of using linear programming,

NAPIER should use integer programming [4]. Unfortunately, integer programming

is known to be intractable [6], which leads to severe restrictions on the number of

equations and the size of the backtrack tree that can be handled. Hence, to avoid

such restrictions, NAPIER uses linear programming.

It is important to note that, while bounds computed by linear programming are

not guaranteed to be tight 4, they are guaranteed to be correct: upper bounds will be

4A bound bl, interpreted as an interval, is said to be tight with respect to a bound b2 if bl and

b2 are identical, bl is looser than b2 if bl contains b2.

greater than or equal to integer programming upper bounds, and lower bounds will

be less than or equal integer programming lower bounds. In addition, we have found

that, in practice, linear programming bounds are usually integral, in which case there

is no loss of solution quality.

2.4 Example

We now illustrate the above procedure using Equations 1-4. Let us assume that b = 10

and the exogenous orders of magnitude are as follows: om(Kw) = -14, om(K_) =

-2, om(Ca) = -5. This corresponds to a moderately strong solution of a strong acid.

The backtrack tree resulting from these equations is shown in Figure 4. The equations

associated with each level are shown on the left of the tree. Note that Equation 3

had to be split into two product expressions, with the introduction of an intermediate

variable int. The rules (and hence the disjuncts) associated with each non-root node

axe displayed near each node. Nodes that are filled in are the inconsistent nodes. For

example, the left most leaf node can be seen to be inconsistent using the following

line of reasoning. Applying rule 3a to Equations 1 and 2, we get

ore([OH-I) = om([A-])= om([AH])

om([A-]) < om(C_,) < om([A-]) + 1

om([A-]) < om([g+]) < ore([A-l) ÷ 1

Since ore(Ca) = -5, it follows that the least value of om([A-]) is -6. Hence the

least values of om([OH-]) and om([H+]) axe also -6, and hence the least value of

om([OH-][H+]) is -12. But rule 1 applied to Equation 4 requires that:

om([OH-][g+]) = om(Kw)= -14

which leads to a contradiction.

Of course, NAPIER doesn't need the above line of reasoning to infer inconsistencies;

it reaches the same conclusion using linear programming.

The only consistent set of inequalities at the leaf nodes is the middle most leaf

node, corresponding to assuming that om([A-]) > ore(lOg-I) and om([A-]) >

om([AH]). The quantity bounds calculated at this node axe as follows: 5

om([H+]) = -5

ore([OH-I) = (-10,-9)

om([AH]) = (-9,-7)

om([A-]) = -5

Since [A-] is at least two orders of magnitude greater than [AH], and at least four

orders of magnitude greater than [OH-], a chemist is justified in making the assump-

tions that [A-] >> [OH-] and [A-] :>> [AH]. These assumptions can then be used to

simplify the equations, as discussed earlier.

5ore(q) = (l, u) represents the fact that I < ore(q) < u

7

A slight variation of the aboveexampleillustrates the importanceof having such
justifications. Supposethat, insteadof having om(Ca) = -5, we had ore(Ca) = -8.

This corresponds to a weak solution of the same strong acid. Using this new value

for ore(Ca), NAPIER predicts the following bounds on the orders of magnitude:

om([H+]) = -7

om([OH-]) -- (-8,-7)

om([AH]) = (-14,-12)

om([A-]) = -8

These values justify the assumption that [A-] >> [AH], but the other assumption,

[A-] :>> [OH-], is seen to be completely unjustified. This means that only Equation 2

can be simplified. Hence, NAPIER is a useful tool in justifying the order of magnitude

assumptions that scientists and engineers make in simplifying equations.

In addition to its role in justifying order of magnitude assumptions, NAPIER's

predictions can also be used directly. For example, if all the chemist is interested in is

the approximate pH of the solution s, then NAPIER's predictions can be used directly:

in the first case, the pH is between 5 and 4; in the second case, the pH is between

7 and 6. Note that NAPIER was able to make these predictions using approximate

values of Ca, I<w, and I<a. This feature makes it particularly useful during conceptual

design.

3 Order of magnitude reasoning is intractable

The backtracking algorithm described in the previous section, generates a tree whose

worst case size is exponential in the number of sum and difference expressions. In

this section we show that order of magnitude reasoning using the rules in Figure 3 is

intractable, even if orders of magnitude are not required to be integral. This means

that NAPIER can do little better than generate a backtrack tree whose worst case size

is exponential.

We start by defining the decision problem corresponding to finding the maximum

order of magnitude of a quantity:

Definition 1 (ORDER OF MAGNITUDE REASONING) Let E be a set of equations, and

let V be the set of quantities used in E. Let X C V be the set of exogenous quantities,

with known orders of magnitude. Let q E V be a quantity and let B be an integer.

Let s : V ---, { q-, -, unknown} be a function that assigns signs to the quantities in V.

(Quantities with unknown signs are assigned "unknown. ") Assuming that the order

of magnitude of a quantity is not required to be integral, is the maximum value of

om (q), derived using the rules in Figure 3 on the set E, greater than or equal to B ?

6The pH of a solution is defined to be - logl0[H+].

8

The following theorem statesthe intractability of order of magnitude reasoning.7

Theorem 1 The ORDER OF MAGNITUDE REASONING problem is NP-complete.

Proof: See Appendix A. D

Assuming P # NP, Theorem 1 tells us that, in the worst case, NAPIER will

have to generate a backtrack tree whose size is exponential in the number of sum

and difference terms. Unfortunately, the exponential blow up does occur in prac-

tice. We have used NAPIER in the domain of electromechanical devices as part of

the automated model selection system described in [12; 13]. Table 1 summarizes

NAPIER's performance on models of ten different devices (see [12] for a description of

the devices).

Example

number

1

2

3

4

5

6

7

8

9

10

Number of

equations

28

31

45

60

8O

110

111

119

145

163

Number of

+/- terms

Time (sec) on an Explorer II

24

25

32

32

35

43

50

All equations With causal ordering

11 2733

11 2435

14

2.0

1.0

2.9

2.7

37.2

35.9

94.6

20.4

45.2

21.0

Table 1: NAPIER's run times with and without causal ordering.

The second column in this table shows the total number of equations in each

example, while the third column shows the the total number of sum and difference

terms. The fourth column shows the time it took NAPIER to run its backtracking

algorithm on the complete set of equations, s NAPIER was given a maximum of one

hour to solve each example; a "-" entry in column four denotes that NAPIER could

not solve the example in an hour. As is clear from the table, only the two smallest

examples could be solved in under an hour, each taking over 40 minutes. Hence,

NAPIER appears to be quite impractical, except for the smallest examples. To make

it practical, we now develop an approximate reasoning scheme for NAPIER that trades

off accuracy for speed.

7See [3] for a comprehensive introduction to the theory of intractability.
8The fifth column will be discussed in the next section.

9

4 Approximation algorithms in NAPIER

The backtrack tree developed by NAPIER is, in the worst case, exponential in the

number of sum and difference terms in the set of equations under consideration.

Hence, to make NAPIER practically useful, it is important to decrease the number of

sum and difference terms that are handled at any one time. We now discuss a method

for doing this, based on a dependency ordering of the equations.

4.1 Ordering the equations

The dependency ordering of equations that we consider is the causal ordering, de-

scribed in [5]. The causal ordering specifies the order in which equations are to be

solved, and identifies minimal sets of equations that must be solved simultaneously.

The causal ordering can be viewed as a directed acyclic graph. Each node in the

graph consists of a set of equations that must be solved simultaneously. There is an

edge from node nl to node n2 if the equations at n2 use a quantity whose value is

determined by the equations at nl.

NAPIER processes the equation sets in the order specified by the causal ordering:

equation sets earlier in the ordering axe processed first. NAPIER bounds the orders

of magnitudes of the quantities used in an equation set, and uses these bounds as

exogenous bounds for equation sets later in the ordering.

The use of the above dependency ordering has a significant computational advan-

tage. A laxge set of equations, with many sum and difference terms, can often be

broken down into many small sets of equations, with each equation set having very

few sum and difference terms. Hence, NAPIER can process each equation set in the

dependency ordering very fast. Column five in Table 1 shows the time it took NAPIER

to solve the ten examples using causal ordering. It takes NAPIER from a few seconds

to under two minutes to solve each of these examples, showing that causal ordering

has made NAPIER practical for large sets of equations.

4.2 Loss of accuracy

The drawback of using the dependency ordering is that global constraints can be

lost, leading to excessively loose bounds on the orders of magnitudes. Consider, for

example, the set {yl = zl * x2, y2 = z3/yl,y3 = Yl * y2}, and let xl,x2, and x3 be

exogenous with orders of magnitude 0. The dependency ordering generated from this

set of equations is:

{y2= x3/yl}
/ \

{y, = x, • x_} ---. {y3= y, • y_}

Using this dependency ordering, NAPIER computes the order of magnitude of y3 as

follows: from the first equation it computes ore(y1) to be between 0 and 1; from

the second equation, and the calculated bound on om(y_), it computes om(y2) to be

10

Example # I Ama_

1 11

2 11

3 10

4 9

5 9

]] Example # Ama_

6 12

7 7

8 9

9 7

10 9

Table 2: Maximum value of A for each example.

between -2 and 0; and from the third equation and the calculated bounds on om(yl)

and om(y2), it computes om(y3) to be between -2 and 2. However, if all three

equations were considered simultaneously, NAPIER computes ore(y3) to be between

-1 and 1.

The reason for the looser bound in the first case stems from not enforcing some

global constraints. For example, the lower bound of ore(y3) can be -2 only when

om(yl) = 0 and ore(y2) = -2. However, when om(yl) is 0, the second equation

dictates that the lowest that om(y2) can be is -1. This fact is lost when the third

equation is processed by itself.

More generally, the above problem occurs when a quantity, like y3, depends on two

or more quantities, like yl and y2, whose values have been determined by equations

that are earlier in the causal ordering. In using these previously determined values,

NAPIER disregards any additional constraints that might hold between those values.

Hence, bounds computed based on these values may not be as tight as possible.

NAPIER can partially address this problem by combining adjacent sets of equations

in the dependency ordering. This allows more equations to be handled simultaneously,

so that more global constraints can be incorporated. However, combining adjacent

sets of equations can lead to an increase in the number of sum and difference terms

that must be handled simultaneously. Hence, adjacent sets are combined only when

the number of sum and difference terms in the resulting set does not increase beyond

a threshold (call this threshold A).

Combining adjacent sets of equations, as described above, also allows us to par-

tially empirically evaluate the effect of causal ordering on accuracy. We ran NAPIER

a number of times on each of our examples, using increasing values of A, allowing

a maximum of one hour per run. Table 2 shows the maximum value of A used for

each example. We then compared the bounds that were computed without combining

adjacent sets with the bounds that were computed with the maximum setting of A.

Interestingly, we found that there was no loss of accuracy--the bounds computed

with and without combining adjacent sets were identical.

To understand the reason for this somewhat surprising result, we now analyze the

source of the additional constraints on previously determined values. Let us assume

that om(p3) is computed using previously computed values of ore(p1) and ore(p2).

Additional constraints on the values of ore(p1) and ore(p2) stem from one of two

sources: (a) om(pl) and ore(p2) are determined simultaneously; and (b) the value

11

Equations per nodeExample
number

1

2

3

4

5

6

7

8

9

10

Maximum

7

7

7

1

12

18

17

9

18

16

Average

1.27

1.24

1.15

1.00

1.29

1.29

1.26

1.25

1.21

1.10

of extra

edges

1

0

1

0

1

2

6

2

3

0

Table 3: Properties of the causal ordering graph

of om(pl) is used in computing the value of ore(p2), i.e., the values of one of these

quantities depends on the value of the other. Poin_ (a) manifests itself as a node in

the causal ordering which contains more than one equation. Point (b) manifests itself

as multiple paths between two nodes in the causal ordering.

Hence, if the causal ordering, viewed as a graph, satisfies the following two prop-
erties:

1. each node contains exactly one equation; and

2. there is at most one path between any two nodes;

then we can show that there will be no additional constraints between previously

determined values. Hence, there is no loss of accuracy in using the causal ordering.

Table 3 shows how closely the causal orderings generated from our examples match

the above two properties. The second and third columns of this table show the

maximum and average number of equations per node, respectively. One can see that,

in all cases, the average number of equations per node is very close to 1. The fourth

column shows the minimum number of edges that must be removed from the causal

ordering to ensure that there is at most one path between any two nodes. One can see

that, in most cases these numbers are very small. Hence, the above analysis provides

us with some insight into the reasons underlying the fact that, in our examples, the

bounds computed with and without combining adjacent sets are identical.

5 Error estimation

In this section, we estimate the error introduced by the use of the heuristic rules

introduced in Section 2A. We then analyze some alternate order of magnitude rules

that seem intuitively plausible, and show that these rules introduce unacceptably large

12

errors. The analysis is done using probability theory and is based on interpreting each

quantity as a random variable. 9

5.1 Estimating the error of heuristic rules

We start by analyzing rule 3b. Let Q, Q1, and Q2 be quantities such that Q = QI+Q_.

Let fQ_ and fQ2 be the probability density functions of Q1 and Q2, respectively, and let

fQ,,Q2 be their joint probability density function. (Briefly, fQ, (ql) is the probability

that Q_ lies between ql and ql + dql, and fQ,,Q_(ql,q_) is the probability that Q1 lies

between ql and ql + dql, and Q2 lies between q2 and q2 + dq2.) Since Q = Q1 + Q2,

it follows that the probability that Q lies between l and u, for any values l and u, is:

Prob{l <_ Q < u} =

oo /u--ql
/-oo Yt-ql fQL,Q2(ql,q2)dq2dqi (6)

Let us now assume that ore(Q1) = nl and om(Q2) = n2, with n I > n2. Under these

conditions, rule 3b states that ore(Q) = nl, i.e., b"1 < Q < b"_+_. To estimate the

error in rule 3b, _(Rule 3b), we must calculate the probability that Q lies outside the

region from bTM to b"_+1 :

e(Rule 3b)

= 1-Prob{b "1 <Q<b re+l}

1 F= - .fQ, ,Q2(ql, q2)dq2dql
¢:x) Jbnl--ql

(7)

To evaluate this integral, we make the following assumptions:

Assumption 1:Q1 and Q2 are independent random variables. Hence, the joint

probability density of Q1 and Q2 is just the product of the individual probability

densities:

fQ,,Q2(ql,q2) = fQ,(ql)fQ2(q2) (8)

Assumption 2:Q1 and Q2 are uniformly distributed on the intervals [bm , bre+l) and

[b"2 , b"2+1), respectively:

1 if b"' < ql < b"'+l
bnl +1 _bnl

fQl (ql) = 0 otherwise

1 if b"_ < q2 < b"_+1
bn_ +l _bn2

fQ_ (q2) = 0 otherwise

9See [2] for an introduction to probability theory and random variables.

13

1') om(ql * q2) = ore(q,) -4- ore(q2)

2') om(ql/q2) = ore(q1)- ore(q2)

3a') om(ql + q2) = ore(q1) if om(ql) = ore(q2)

Figure 5: Alternate rules for order of magnitude reasoning.

Using these assumptions, we get the following result (see Appendix B for an outline

of the derivation):
b+l

e(Rule 3b)= 2b,__,2(b_ 1) (9)

Hence, under Assumptions 1 and 2, the error in rule 3b is maximum when (nl - n2)

is minimum, i.e., (nl - n2) = 1, which occurs when quantities of consecutive orders

of magnitude are being added. When b = 10, the maximum error is 6.11%. For

larger values of either (nl - n2) or b, the errors are even smaller. For example, with

b = 10, and (nl - n2) = 2 (i.e., adding a quantity that is two orders of magnitude

smaller) the estimated error is only 0.61%. The error in rule 4b can also be shown to

be (b+ 1)/2b"l-"2(b - 1)in a similar way.

5.2 Alternate order of magnitude rules

The above error estimation techniques can also be used to analyze alternate rules

for order of magnitude reasoning. In particular, we analyze the three inference rules

shown in Figure 5. These rules were our first attempt at modeling an engineers order

of magnitude reasoning. Rule 1' and 2' were meant to model reasoning like: "If

the resistance, R, is about 10 -1 ohms, and the current, i, is about 10 -2 amps, then

the voltage drop, V (= iR), is about 10 -3 volts." The idea was that the order of

magnitude of a product or quotient was the sum or difference, respectively, of the

orders of magnitudes of the arguments. Rule 3a' was meant to model the intuition

that adding quantities of the same order of magnitude results in a quantity of the

same order of magnitude. However, we can show that, while these rules may appear

intuitively appealing, they are also unacceptably error-prone. In particular, we can

use the above error estimation techniques to show that:

e(Rulel') = 1-(blnb-b+l)l(b-1) 2 (10)

e(Rule 2') = 1/2 (11)

e(Rule 3a') = 1 - (b- 2)2/2(b - 1) 2 (12)

Substituting b = 10 into the above equations tells us that the error in rule 1' is

82.68%, the error in rule 2' is 50%, and the error in rule 3a' is 60.49%. We believe

that these errors are unacceptably large, and hence have chosen not to include these

rules in NAPIER.

14

5.3 Discussion

The error estimation results presented above depend crucially on Assumptions 1

and 2. Assumption 1 assumes that the two quantities being combined, Q1 and Q2,

are independent random variables. This assumption is reasonable if Q1 and Q2 are

exogenous quantities. It is also reasonable if the set of exogenous quantities used to

calculate the order of magnitude of Q1 is disjoint from the set of exogenous quantities

used to calculate the order of magnitude of Q2. However, if the orders of magnitudes

of Q_ and Q2 depend on the order of magnitude of a common exogenous quantities,

then Q1 and Q2 are not independent.

Assumption 2 assumes that the two quantities being combined, Q1 and Q2, are

uniformly distributed random variables. In the absence of any additional information,

this assumption is reasonable for exogenous quantities. However, it breaks down for

derived quantities. For example, if Q1 and Q2 are uniformly distributed random

variables, and if Q = Q1 op Q2 (where op is one of +,-,*,or/), then Q is not

uniformly distributed. Hence, when the order of magnitude of Q is used to calculate

the orders of magnitudes of other quantities, Assumption 2 is not valid.

The above discussion implies that our error estimation technique has limited ap-

plicability. In particular, the errors estimated in this section cannot be directly used

to estimate the error introduced in predictions based on a set of equations. Nonethe-

less, these techniques have proved useful in helping us select a reasonable set of order

of magnitude reasoning rules, while alerting us to the possibility of large errors intro-

duced by alternate rules.

6 Order of magnitude reasoning without heuris-

tic rules

The error analysis in the previous section was necessary because of our use of heuristic

order of magnitude rules (rules 3b, 3c, 4b, 4c, 5b, and 5c). The error introduced by

these rules can be removed by replacing these rules with the rules shown in Figure 6

(replace rule 3b with rule 3b', etc.). Using interval arithmetic and Equation 5, one can

see that these rules introduce no error, and are guaranteed to be correct. However,

their drawback is that, like rules 3a, 4a, and 5a, they predict larger intervals for

(q_ + q2), (q_ - q2), and (q_ -4- q2) than interval arithmetic predicts under the same

restrictions on ql and q2. For example, if ore(q1) = n, and om(q2) -- n - 1, then

interval arithmetic predicts that (ql + q2) is bounded by b"+ b"-1 and b"+1 + b", while

rule 3b' predicts that (ql + q2) lies in the larger interval from b" and b"+_.

Let R1 be the set of rules in Figure 3, and let R2 be the result of replacing rules 3b,

3c, 4b, 4c, 5b, 5c in R1 by the rules in Figure 6. Clearly, NAPIER with R_ predicts

larger intervals than with R1. To empirically compare the interval widths predicted by

RI and/_2 when b = 10, we ran NAPIER with the two sets of rules on the ten examples

introduced earlier (Table 1). For each quantity, q, in each example, we compared the

15

3b') om(q,) 5 ore(q,+ q_)5 ore(q1)+ 1 if ore(q,) > om(q_)
3c') ore(q2) < om(ql -t-q2)< ore(q2)+ 1 if ore(q1)< ore(q2)

4b') ore(q1)- 1 < om(q,- q2) < om(ql) if om(ql) > om(q2)

4c') ore(q2)- 1 < om(ql-q2) < om(q2) if om(q,) < om(q2)

5b') ore(q1) - 1 < ore(q1 - q2) < orn(ql) -t- 1 if om(q,) > ore(q2)

5c') om(q:) - 1 < ore(q, - q2) < ore(q2) + 1 if ore(q,) < om(q:)

Figure 6: Correct rules for order of magnitude reasoning.

R3(q)/R1 (q) R3(q)/R1 (q) R](q)/R_°(q)Example R_°(q)/R_°(q) 2 lo 2 lo
Number Exo. ratio 0.98 Exo. ratio 0.16 Exo. ratio 0.62

1

2

3

4

5

6

7

8

9

10

3.90

1.59

48.81

5.2e6

2.6e4

1.9e3

29.8

1.8e6

1.5e9

1.5e8

1.28

1.07

1.37

2.37

2.58

1.10

1.00

1.79

9.00

17.43

0.11

0.09

0.12

0.15

0.51

0.10

0.35

0.14

0.37

0.41

0.54

0.41

0.62

1.12

1.44

0.43

0.62

0.81

4.12

5.15

Table 4: This table compares different rule sets and bases. R]°(q) is the predicted

interval width of q with rule set R1 and base 10. Similarly, R_°(q) uses rule set R2

and base 10, and R_(q) uses rule set R3 and base 2. Columns two through five show

the average values of the ratios displayed at the top of each column for each example.

The exogenous ratios specified at the top of the last three columns are the average

ratios of the width of an exogenous parameter with base 2 to the width with base 10.

width, R_°(q), of the interval predicted by R2 using base 10, with the width, R_°(q),

of the interval predicated by R1 using base 10. To ensure a fair comparison, the

orders of magnitudes of exogenous quantities were the same for both sets of rules.
The second column in Table 4 summarizes our results. This column displays the

average of the ratios R_°(q)/R]O(q) in each example, where q ranges over the set of

non-exogenous quantities in the example. Not surprisingly, R2 always predicts larger

intervals. Unfortunately, these intervals are often significantly larger (up to 10 9 times

as large), making rule set R2 with base 10 largely useless in practice. The heuristic

rules in R1 axe useful precisely because they prevent this interval explosion, without

introducing too much error.

16

om(ql + q2) = om(ql) + 1

ora(q, - q2) __ om(ql) - 1

if om(ql) =- ore(q2)

if om(ql) = ore(q2)

Figure 7: Tighter rules for base 2.

While Ri°(q) will always be larger than Rl°(q), the former is, on the average,

significantly larger than the latter in the above experiment because the base of the

logarithm is quite large (b = 10). In particular, one application of rule 3b' makes the

interval width of a sum be approximately b times larger than either applying rule 3b

or using interval arithmetic. Hence, larger the value of b, larger the predicted interval

widths. This suggests using smaller values of b. Note that we are free to use smaller

values of b because we are not using heuristic rules, so that we do not require b to be

"much larger" than 1.

A natural choice for a smaller b is 2, because it is the smallest number that ensures

that rule 3a continues to be correct (see Section 2.1). 1° In fact, using b = 2, we can

further strengthen rules 3a and 4a with rules 3a" and 4a" shown in Figure 7. One

can verify that, with b = 2, the predictions of rules 3a" and 4a" are identical to the

predictions of interval arithmetic; predictions of rules 3a and 4a are looser.

Let R3 be the set of rules resulting from replacing rules 3a and 4a with rules 3a"

and 4a" in R2. To empirically compare the interval widths predicted by R1 (using

base 10) and R3 (using base 2), we ran NAPIER with the two sets of rules on our ten

examples. As before, for each quantity, q, in each example, we compared the width,

R32(q), of the interval predicted by R3 using base 2, with the width, R]°(q), of the

interval predicted by R1 using base 10. To ensure a fair comparison, we made sure

that exogenous values in both cases were approximately equal; the exogenous values

cannot be exactly equal because the bases are different in the two cases. For example,

if the exogenous value of om(q) using base 10 is 1 (i.e., 10 < q < 100), then with

base 2 we would use 4 < ore(q) < 6 (i.e., 16 < q < 128). The best approximation

for each exogenous value led to the width of the exogenous values with base 2 being

on the average 0.98 times the width with base 10. The third column displays the

Rz(q)/R 1 (q) in each example, where q ranges over the set ofaverage of the ratios 2 10

non-exogenous quantities in the example. Once again, the intervals predicted with

R3 are larger than those predicted by R1. However, unlike the results with R2, the

intervals do not explode--the intervals range from 1 to about 17 times larger, with an

average of about 2.4 times larger. This makes R3 with base 2 useful for determining

conservative upper bounds for interval widths.

A second important advantage of using base 2 is that it leads to finer granularity

on the logarithmic scale than base 10. Since NAPIER is unable to exactly represent

1°Values of b smaller than 2 would require more choices for sum and difference terms, making the

backtrack tree larger and more expensive to traverse.

17

intervals whoseend points are not integer powersof the chosenbase, it must ap-
proximate them. The smaller the chosenbase,the better is the approximation. For
example,an exogenousquantity, q, might be known to lie between 20 and 25. If the

chosen base is 10, then this must be approximated as ore(q) = 1 (i.e., 10 _< q < 100).

On the other hand, if the chosen base is 2, then it can be approximated more ac-

curately as ore(q) = 4 (i.e., 16 <__q < 32). Better approximations of exogenous

quantities can lead to tighter bounds for non-exogenous quantities.

To empirically support this claim, we repeated the previous experiment, except

that we used narrower exogenous intervals for base 2 than for base 10. The fourth

column shows average R_(q)/Rl°(q) ratios when exogenous values with base 2 are

on the average 0.16 times the exogenous values with base 10. One can see that

the significantly narrower exogenous intervals lead to significantly narrower predicted

intervals. The fifth column shows average n_(q)/nl°(q)ratios when exogenous values

with base 2 are on the average 0.62 times the exogenous values with base 10. Here

the results are mixed: in some cases base 2 gives tighter bounds, while in other cases

base 10 is tighter. This demonstrates that as the exogenous value ratios increase, the

heuristic rules in Ra become more useful.

The results of this section are helpful in selecting appropriate rule sets and bases

for order of magnitude reasoning. The rule set to be used depends on the selected

base as follows. If a large base, such as 10, is used then rule set Ra should be used.

Rule set R2 is useless with large bases because of interval explosion. With a large

base, the error introduced by the heuristic rules in R1 is small, and it decreases as the

base becomes larger. If a small base is used, then rule set R2 is appropriate since the

interval explosion is not so severe. Furthermore, rule/set Ra is inappropriate because

the error introduced by the heuristic rules is large for small bases. When base 2 is

used, rule set R3 is preferred over R2 because the tighter rules in Figure 7 can be
used.

The choice of the base is dependent upon the characteristics of the problem to be

solved. If a problem requires conservative and error-free estimates, then rule set R1

is inapplicable, and a small base such as 2 should be selected. However, if the error

introduced by using the heuristic rules in R1 is acceptable, then the choice of base

hinges on how well the bases can approximate the exogenous values of the problem.

If the exogenous values are such that a small base can approximate them significantly

better than a large base, then the small base is to be preferred since it will predict

tighter bounds. If, on the other hand, the approximations with both the small and

the large base are comparable, then the large base is preferable since the heuristic

rules in R1 will help predict tighter bounds.

7 Related work

Order of magnitude reasoning has been widely studied in AI. Murthy [11] was the

first to propose the use of a logarithmic scale for the order of magnitude of a quantity.

18

In that paper, he also provides rules of inference to infer new orders of magnitude

from old ones. Some of these rules are similar to ours. For example, he includes

rules 3b, 3c, 4b, and 4c. However, instead of 1, he proposes the rule om(ql * q_) =

om(ql) + ore(q2) (which is rule 1'), and instead of rule 3a, he proposes the rule

ore(q1 + q2) = ore(q1) when ore(q1) = om(q_) (which is rule 3a'). As we saw in

Section 5.2, the estimated error in these rules is too large, and hence we have chosen

not to include them in NAPIER. Unlike our work, Murthy provides no analysis of how

his inference rules can be used to find the order of magnitudes of quantities related by

sets of simultaneous equations. In addition, we also analyze the complexity of order

of magnitude inference, and present an approximate reasoning technique that works

well in practice.

Raiman [15; 16] explores the foundations of symbolic order of magnitude reason-

ing. He defines a variety of order of magnitude scales, such as Close and Comparable,

built out of the basic order of magnitude granularities, Small and Rough. He in-

troduces ESTIMATES, a system to solve order of magnitude equations. The primary

difference between NAPIER and ESTIMATES is one of emphasis: NAPIER can be viewed

as providing justifications for making order of magnitude assumptions; ESTIMATES

can be viewed as a formalization of the use of such order of magnitude assumptions

to symbolically manipulate and simplify equations.

Order of magnitude reasoning in the O(M) formalism [9] uses a quantity e to

represent the largest quantity that can be considered to be "much smaller" than

1. This is analogous to the quantity b in NAPIER (i.e., b = l/e). However, there

are a number of differences between O(M) and NAPIER. First, the O(M) formalism

is based on order of magnitude relations between quantities. Hence, it works best

when equations involve only links (links are ratios of quantities). NAPIER, on the

other hand, is based on the order of magnitudes of the quantities themselves, and

hence works with any algebraic equations. This is advantageous because it is not

always possible to convert equations into equations involving only links. Second,

O(M) requires equations to be converted into assignments, which allow a new relation

or range to be inferred from already known relations. This is a serious restriction

since equations can be converted to assignments only in the absence of simultaneous

equations. As we have seen, NAPIER does not have this restriction.

NAPIER is also related to interval reasoning discussed in [10; 17; 18]. NAPIER can

be viewed as interval reasoning in which the end points of the interval are restricted

to a particular set of points of the form b", with specified base b, and any integer

n. The drawback of this restriction is that under certain conditions, compared to

interval reasoning, the bounds inferred by NAPIER are unnecessarily loose (e.g., see the

discussion of rule 3a in Section 2.1). The advantage of this restriction is that, unlike

traditional interval reasoners, NAPIER is able to use sets of non-linear simultaneous

equations to infer quantity bounds. In addition, the ability to simultaneously process

all the equations in a set allows NAPIER to exploit global constraints to compute

tighter bounds (see Section 4). Another distinguishing characteristic of NAPIER,

which classifies it as an order of magnitude reasoning system rather than just an

19

interval reasoner,is its ability to useheuristic rules (e.g, rule 3b).

8 Conclusions

In this paper we described an implemented order of magnitude reasoning system called

NAPIER. NAPIER defines the order of magnitude of a quantity on a logarithmic scale

and uses a set of rules to propagate order of magnitudes through equations. A novel

feature of NAPIER is its handling of non-linear simultaneous equations. Since the

order of magnitude reasoning rules are all disjunctions of linear inequalities, NAPIER

is able to use linear programming, in conjunction with backtracking, to find bounds

on the order of magnitudes of quantities related by sets of non-linear simultaneous

equations.

We also showed that order of magnitude reasoning using NAPIER's rules is in-

tractable. Hence, NAPIER uses an approximate reasoning technique, based on causal

ordering, leading to a practically useful system. This approximate reasoning tech-

nique trades off accuracy for speed. However, in practice, there does not appear to

be any loss of accuracy.

Since some of NAPIER's rules are heuristic rules, and we estimated the error intro-

duced by the use of these rules by interpreting each quantity as a random variable.

We used the same error estimation technique to show that other intuitively appeal-

ing heuristic rules can lead to larger errors. Finally, we empirically analyzed correct

alternatives to the heuristic rules. While these alternative rules do not introduce any

error, they can lead to interval explosions. Interval explosion is addressed by using

smaller values of the base of the logarithmic scale. The empirical analysis leads to a

set of guidelines on how to select the base of the logarithm and the set of inference

rules.

The work described in this paper can be extended in a number of ways. First,

we would like to extend NAPIER's inference rules to handle non-algebraic operators,

such as trigonometric functions. A straightforward method of doing this is to use

Taylor series expansions of the operators, though care must be taken to ensure that

the series expansion is truncated at the right point. Second, we would like to use

NAPIER in temporal simulation. One alternative is to follow Weld's work on HR-QSIM

[19], while another alternative is to follow Kuipers and Berleant's work on Q2 [8].

NAPIER has been extensively used in an automated model selection system de-

scribed in [12; 13]. We believe that NAPIER will find wide spread applications in

different aspects of engineering and scientific problem solving.

Acknowledgements

I would like to thank Richard Fikes, Pat Hayes, Leo Joskowicz, and Dan Weld for

useful discussions and comments on earlier drafts of this paper. Thanks also to the

anonymous reviewers of conference versions of this paper, whose detailed comments

20

helped improve the paper. Pandurang Nayak was supported by an IBM Graduate

Technical Fellowship. Additional support for this research was provided by the De-

fense Advanced Research Projects Agency under NASA Grant NAG 2-581 (under

ARPA order number 6822), by NASA under NASA Grant NCC 2-537, and by IBM

under agreement number 14780042.

A Proof of Theorem 1

It is easy to see that the ORDER OF MAGNITUDE REASONING problem is in NP since

a non-deterministic algorithm can proceed by (a) for each sum and difference term

in E, guessing a rule (a, b, or c) from rule sets 3, 4, or 5, as applicable; and (b) use

linear programming on the resulting set of inequalities to see if the maximum value

of ore(q) exceeds B. Since linear programming is known to be in P [7], it follows that

the ORDER OF MAGNITUDE REASONING problem is in NP.

To show that the ORDER OF MAGNITUDE REASONING problem is NP-hard, we

reduce an arbitrary instance of 3SAT to an instance of the ORDER OF MAGNITUDE

REASONING problem. Let 2"1 be an arbitrary instance of 3SAT consisting of a set

U = {ul,...,u,} of boolean variables, and a set C = {cl,...,cm} of three literal

clauses. We construct an instance, 2"2, of the ORDER OF MAGNITUDE REASONING

problem as follows.
For each boolean variable ui E U, 1 < i < n, add the following 6 equations to E,

and the corresponding quantities to V:

vi = xil * zi_ (13)

_Yi = X_l * x_2 (14)

Yn = vi*_Ti (15)

Yi = Yil + Yi2 (16)

zi = vi - vi (17)

z, = (z,, + z,2)* zia (18)

Add Xil, xi2, x_l, x_2, Yi, zil, and zi3 to the set X of exogenous quantities. Define the

orders of magnitudes of these quantities as follows:

om(xn) = om(x,_) = om(_i) = om(_) = ore(z,3) = 0 (19)

o,_(y,) = ore(z,,)= 1 (20)

For each clause cj E C, 1 <_ j <_ m, with literals ljl, lj_, and lj3, add the equation

(((gj + fjl) + fj2) + fj3) = hi (21)

where the quantity fjk is vi if ljk is ui, and _7i if ljk is ui, for some 1 < i < n. Add gj

and h i to V. Add gj to X, and define its order of magnitude as follows:

o,_(gj) = 1 (22)

21

Add the following equation to E:

hi * h2*... * hm = q (23)

Let s be such that all the quantities in V, except z; and zi3 (1 < i < n), are

positive, and let the signs of z, and z_3 be unknown. Let B be 3m - 1.

That completes the reduction. Clearly, it can be done in polynomial time. We

now show that any assignment of orders of magnitudes to the quantities of 2"2 that

satisfies Equations 13-20, according to the rules in Figure 3, assigns the order of

magnitude 1 to exactly one of v_ and _Y,,for each 1 < i < n, and 0 to the other.

From rule 1 applied to Equation 13 we have:

om(xil) -4- om(zi_) < om(vi) <_ ore(x,,)-4- om(xi2) A- 1 (24)

Substituting the orders of magnitudes of x_l and xi2 (Equation 19) into the above

equation, we have

0 < om(vi) < 1 (25)

In a similar way, rule 1 applied to Equation 14 implies that:

0 < om(_Y_) < 1 (26)

Applying rule 1 to Equation 15 leads to:

ora(v,) -4- om(_Y,) < om(y,,) <_ om(v,) + ore(5,) + 1 (27)

Equation 16 implies that om(y_) > om(y_l). This fact follows from the observation
that in rule 3:

ore(q, + q2) _> om(qi) (28)

om(q, + q2) > om(q2) (29)

under all three conditions. Since om(y_) = 1 (Equation 20), it follows that

o-,(u.) _<1 (30)

Hence, from Equations 27 and 30 it follows that:

om(v,) + om(di) < 1 (31)

Now, since om(z_l) = 1 (Equation 20), it follows from Equation 28 that

om(z,1 + z_2) > 1 (32)

Rule 1 applied to Equation 18 leads to:

om(z_l + z_2) + om(zi3) < om(z,) (33)

22

Hence,from Equations 32and 19, it follows that:

om(zi) > 1 (34)

Now, rule 4 implies that

ore(q1 -- q2) <_ maximum{ om(ql), ore(q2)} (35)

Hence, from Equations 17, 25, 26, and 35, it follows that at least one of om(vi) and

om(gi) must be 1. But since Equation 31 tells us that that their sum must be less

than or equal to 1, it follows that exactly one of om(vi) and om(_i) must be 1, with

the other being 0.
We now show that 2"1 has a satisfying truth assignment if and only if 12 is such

that the maximum value of orn(q) is greater than or equal to B.

(=,) Let 21 have a satisfying truth assignment. We now assign order of magnitudes

to the quantities of 2"2 such that Equations 13-23 are satisfied according to the rules of

Figure 3. For 1 < i < n, if ui is true, then let om(v_) be 1 and ore(g,) be 0; otherwise

let om(vi) be 0 and om(Vi) be 1. Since exactly one of om(vi) and om(tTi)is 1 and the

other is 0, this assignment of orders of magnitude will satisfy Equations 13-20.

Since the truth assignment satisfies every clause c/ = {/jl,lj2,/ja}, 1 _< j _< m,

it follows that at least one of ljl,lj2, or lja is true. Hence, at least one of fjl,f.i2,

or fja has an order of magnitude of 1. Since om(gj) = 1 (Equation 22), it follows

from Equation 21 and rule 3 that the maximum value of ore(hi) is 2. Hence, from

Equation 23 and rule 1, it follows that the maximum value of q is 3m - 1 (2m from

each of the ore(hi), and m - 1 from the product of m factors). Hence, the maximum

value of orn(q) is greater than or equal to B.

(_) Let us now assume that the maximum value of ore(q) is greater than or equal

to B. Consider the assignment of order of magnitudes to quantities that supports

ore(q) taking on its maximum value. For each variable ui, 1 _< i _< n, let ui be true

if and only the order of magnitude of quantity vi is 1 in the above assignment. This

gives us a well defined truth assignment since we have already shown that exactly one

of om(vi) and om(gi) is 1. To show that this truth assignment satisfies very clause,

we proceed as follows.

Since each fjk(1 <_ j <_ m, 1 < k < 3) is either vi or tT_, for some i, Equations 25

and 26 tell us that the maximum value of om(fjk) is 1. Hence, using Equation 21

and rule 3, the maximum value of ore(hi) can be 2. However, for the maximum value

of ore(q) to be greater than or equal to B(= 3m - 1), it follows that ore(hi) must

be 2. Hence, at least one of the fjk must have an order of magnitude of 1. Hence, at

least one of the ljk will be true, and hence the truth assignment constructed above

will satisfy each clause.

Hence, we have shown that 2"1 has a satisfying truth assignment if and only if 2"2

is such that the maximum value of ore(q) is greater than or equal to B. Hence, the

ORDER OF MAGNITUDE REASONING problem is NP-hard.

23

B Derivation of error estimates

In this appendix we give a brief outline of the derivation of e(Rule 3b). Outlines of

the derivations of the other error estimates are similar and can be found in [12]. As

discussed in Section 5, e(Rule 3b) is given by the following:

e(Rule3b) = 1-Prob{b"' <Q<b "t+l}

[b°,+l_+,1 - fQ_,Q2 (ql, q2)dq2dql
oo dbnl-q,

Hence, from Assumption 1 (Equation 8) we get:

e(Rule 3b)= 1 - f__ [bn'+_-a'Jb", -m fQ_ (qt) :fQ2(q2)dq2dq]

We now use Assumption 2 to split the above integral into two integrals, such that the

integrand in both integrals is a non-zero constant throughout the region of integration:

e(Rule 3b) = 1- /t,-,+_-s-_+' ff-_+' 1
Jb", Jb-2 b"' +,,2 _ _ 1)2 dq2dql

Jbnt+i_bnl+' Jbn2 b"_+"l(b- 1) 2 dqidql

= 1 -- i bnl+t-bn2+l bn2+l - bn2
Jb"' b", +"= (b - 1)2 dql

_ [b,t+'-b,2 bm+l -- bn2 - ql
jb,.,i+i_b,,,l+t _-+n_(b'- T)¥ dql

b+l

2b"l-"2(b- 1)

References

[1]

[21

[3]

[4]

Scott W. Bennett. Approximation in mathematical domains. In Proceedings of

the Tenth International Joint Conference on Artificial Intelligence, pages 239-

241, Los Altos, CA, August 1987. International Joint Conferences on Artificial

Intelligence, Inc., Morgan Kaufmann Publishers, Inc.

Wilbur B. Davenport, Jr. Probability and Random Processes. McGraw-Hill Book

Company, 1970.

Michael R. Garey and David S. Johnson. Computers and Intractability. W. H.

Freeman and Company, 1979.

Fredrick S. Hillier and Gerald J. Lieberman.

Reesearch. Holden-Day, Inc., third edition, 1980.

Introduction to Operations

24

[5] Yumi Iwasaki and Herbert A. Simon. Causality in devicebehavior. Artificial

Intelligence, 29:3-32, 1986.

[6] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller

and J. W. Thatcher, editors, Complexity of Computer Computations, pages 85-

103. Plenum Press, New York, 1972.

[7] L. G. Khachian. A polynomial algorithm in linear programming. Dokl. Akad.

Nauk. SSSR, 244:1093-1096 (in Russian), 1979. English translation in Soviet

Math. Dokl. 20 (1979), 191-194.

[8] Benjamin Kuipers and Daniel Berleant. Using incomplete quantitative knowl-

edge in qualitative reasoning. In Proceedings of the Seventh National Conference

on Artificial Intelligence, pages 324-329. American Association for Artificial In-

telligence, 1988.

[9] M. Mavrovouniotis and G. Stephanopolous. Reasoning with orders of magnitude

and approximate relations. In Proceedings of the Sixth National Conference on

Artificial Intelligence. American Association for Artificial Intelligence, 1987.

[10] Ramon E. Moore. Methods and Applications of Interval Analysis. SIAM Studies

in Applied Mathematics. SIAM, Philadelphia, 1979.

[11] Seshashayee S. Murthy. Qualitative reasoning at multiple resolutions. In Proceed-

ings of the Seventh National Conference on Artificial Intelligence, pages 296-300.

American Association for Artificial Intelligence, 1988.

[12] P. Pandurang Nayak. Automated Modeling of Physical Systems. PhD thesis,

Stanford University, Department of Computer Science, Stanford, CA, 1992.

[13] P. Pandurang Nayak, Leo Joskowicz, and Sanjaya Addanki. Automated model se-

lection using context-dependent behaviors. In Proceedings of the Tenth National

Conference on Artificial Intelligence, pages 710-716. American Association for

Artificial Intelligence, July 1992.

[14] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-

ling. Numerical Recipes in Pascal: The Art of Scientific Computing. Cambridge

University Press, 1989.

[15] Olivier Raiman. Order of magnitude reasoning. In Proceedings of the Fifth Na-

tional Conference on Artificial Intelligence, pages 100-104. American Association

for Artificial Intelligence, 1986.

[16] Olivier Raiman. Order of magnitude reasoning. Artificial Intelligence, 51:11-38,

1991.

25

[17] Elisha Sacks. Hierarchical reasoningabout inequalities. In Proceedings of the

Sixth National Conference on Artificial Intelligence, pages 649-654. American

Association for Artificial Intelligence, Morgan Kaufmann Publishers, Inc., July

1987.

[18] Reid Simmons. "Commonsense" arithmetic reasoning. In Proceedings of the

Fifth National Conference on Artificial Intelligence, pages 118-124. American

Association for Artificial Intelligence, 1986.

[19] Daniel S. Weld. Exaggeration. Artificial Intelligence, 43(2), 1990.

26

